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Abstract—Glaucoma is the second leading cause of blindness
worldwide. Often, the optic nerve head (ONH) glaucomatous dam-
age and ONH changes occur prior to visual field loss and are ob-
servable in vivo. Thus, digital image analysis is a promising choice
for detecting the onset and/or progression of glaucoma. In this
paper, we present a new framework for detecting glaucomatous
changes in the ONH of an eye using the method of proper orthog-
onal decomposition (POD). A baseline topograph subspace was
constructed for each eye to describe the structure of the ONH of
the eye at a reference/baseline condition using POD. Any glauco-
matous changes in the ONH of the eye present during a follow-up
exam were estimated by comparing the follow-up ONH topography
with its baseline topograph subspace representation. Image corre-
spondence measures of L1 -norm and L2 -norm, correlation, and
image Euclidean distance (IMED) were used to quantify the ONH
changes. An ONH topographic library built from the Louisiana
State University Experimental Glaucoma study was used to eval-
uate the performance of the proposed method. The area under
the receiver operating characteristic curves (AUCs) was used to
compare the diagnostic performance of the POD-induced parame-
ters with the parameters of the topographic change analysis (TCA)
method. The IMED and L2 -norm parameters in the POD frame-
work provided the highest AUC of 0.94 at 10◦ field of imaging
and 0.91 at 15◦ field of imaging compared to the TCA parameters
with an AUC of 0.86 and 0.88, respectively. The proposed POD
framework captures the instrument measurement variability and
inherent structure variability and shows promise for improving
our ability to detect glaucomatous change over time in glaucoma
management.
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I. INTRODUCTION

G LAUCOMA is a progressive optic neuropathy that, when
left untreated, may result in progressive vision impair-

ment and eventual blindness [1]. It is the second leading cause
of blindness in the world next only to cataract [2]. Current esti-
mates based on population-based surveys predict that there will
be 60 million people worldwide affected by glaucoma in 2010,
increasing to 80 million by 2020 [3]. Retrospective estimates
of glaucoma-related expenses, such as ophthalmologist visits,
glaucoma-related surgical procedures, medications, and other
indirect costs and services indicate an annual cost of about $1.2
billion to $2.5 billion in the U.S. [4]–[6].

The retina is a photoreceptive layer that is composed, in part,
of about one million optic nerve fibers originating from the
neuron cell bodies within the ganglion nerve fiber layer. The
nerve fibers group together and form the nerve fiber bundle or
optic nerves. These optic nerve fibers run parallel to the retinal
surface and exit the eye at the optic disk (blind spot) located in
the posterior end of the eye and carry visual electrical impulses
to the visual cortex of the brain for image formation. The optic
disk region (ODR) is usually referred to as the optic nerve head
(ONH) and exhibits a natural cup shape due to the arrangement
of the optic nerves leaving the eye. The natural arrangement of
the optic nerves as they exit the eye results in a sloping region
called the neuroretinal rim and a deeper region called as an optic
cup. Fig. 1 shows the ONH topography of a primate subject from
the Louisiana State University Experimental Glaucoma (LEG)
study.

A detailed background on the pathophysiology of glaucoma is
described elsewhere [7]. Because glaucoma is a chronic disease,
it typically results in a gradual loss of nerve fibers associated
with retinal ganglion cells. The loss of nerve fibers causes char-
acteristic changes in the appearance of the retinal nerve fiber
layer and eventual changes in the configuration of the optic
disk. Therefore, digital image analysis of the ODR is a rapid
and promising approach for detecting glaucomatous changes in
the ONH region of an eye. Confocal scanning laser ophthalmo-
scope (CSLO), a class of confocal microscope that utilizes a
rotating mirror arrangement to scan an imaging area at various
z-axis depths using laser light beams, can be used to capture the
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Fig. 1. ONH topographies of subject 1D indicating differences in the reso-
lution at 10◦ and 15◦ field of imaging. The topographic surface represents the
vitreo–retinal interface of the eye. An ellipse is manually fit to mark the optic
disk margin. (a) 10◦ field of imaging. (b) 15◦ field of imaging.

3-D architecture of the ONH region. The Heidelberg retina to-
mograph (HRT; Heidelberg Engineering, GmbH, Heildelberg,
Germany) and topographic scanning system (TopSS; formerly
of Laser Diagnostic Technologies, San Diego, CA) are two of
the CSLO instruments used for imaging the ONH region.

In the early stages of glaucoma, the characteristic changes
associated with structural glaucomatous damages may not be
drastic, and therefore may not be obvious. Because glaucoma is
characterized as a progressive optic neuropathy, the diagnostic
accuracy can be improved by detecting changes in the ONH
structure of an eye from a reference or baseline condition. For
detecting progressive glaucomatous changes, the ONH topogra-
phies constructed from the follow-up CSLO exams are com-
pared with the baseline topographies of the eye. Two methods
currently available for detecting topographic pixel-level glauco-
matous changes are: 1) a nonparametric-permutation-test-based
method known as the statistic image mapping (SIM) of the
retina [8] and 2) an analysis of variance (ANOVA) model based
change detection method [9] available in the HRT software as
topographic change analysis (TCA).

In this paper, we present a novel computational framework
for detecting glaucomatous changes in the ONH region of an
eye at the original topographic resolution. The method was
inspired from the theory of proper orthogonal decomposition
(POD) and its application in the analysis of dynamics of turbu-
lence in fluid mechanics [10]. POD is theoretically similar to
Karhunen–Loève expansion, Hotélling transform, and principal
component analysis (PCA). Previous related uses of these tech-
niques include facial recognition application [11]–[13], video
scene change detection [14], estimating brain volume changes
in patients with probable Alzheimer’s disease [15], restoration
of white-light confocal microscope optical section images [16],
and for detecting changes in satellite images [17].

A brief background of the SIM and TCA methods is presented
in Section II. The proposed POD framework was tested using a
library of ONH topographies of 12 primates built from the LEG
study [18]. A brief description of the ONH topographic library
from the LEG study is presented in Section III. In Section IV,
we describe a semiautomatic optic disk rotational alignment al-
gorithm using a fast Fourier transform (FFT) based template
matching algorithm that we used to correct for any rotational
alignment errors in the ONH topographies. Details of the POD

glaucomatous change detection framework are presented in
Sections V and VI. The performance of the POD framework
is compared with the TCA, and the results are presented in
Section VIII. For demonstration, we use the ONH topographies
of subject 1D from the LEG study in all the figures (except
Fig. 3).

II. BACKGROUND

A. Statistic Imaging Mapping (SIM) of the Retina

The SIM of the retina method is based on suprathreshold
cluster tests [19] wherein the locations with statistically signifi-
cant changes are chosen using a primary threshold (for example,
the locations with p < 0.05). Because glaucomatous structural
changes affect a contiguous region in the ONH, the locations
with significant changes are further grouped into clusters, and
the significance of the topograph-level progression is defined
based on the significance of the size of the largest cluster of
significantly changed locations using a nonparametric permuta-
tion test. The SIM of the retina method utilizes a slope-based
test statistic to estimate the primary pixel-level changes in the
topographic height measurements using a baseline and several
follow-up visits. Significance of the pixel-level test statistics and
the significance of the largest cluster of significantly changed
locations are estimated using nonparametric permutation tests.
The current SIM of the retina method requires a minimum of
seven follow-up exams to build a reliable permutation distribu-
tion for the slope test statistic and the cluster-size significance
test.

B. Topographic Change Analysis

The HRT TCA method utilizes a mixed-effect three-way
ANOVA model to detect superpixel-level changes in the ONH
topographies from a baseline exam to a follow-up exam. A su-
perpixel is a group of topographic height measurements from a
neighborhood of 4 × 4 individual pixels pooled in the ANOVA
model for a specific detection of localized changes. The ANOVA
model for detecting superpixel changes, with each superpixel
containing 16 topographic height measurements from locations
l = 1, 2, . . . , 16, from a baseline (at time t = 1) to a follow-up
visit (at time t = 2) using a set of N topographies each acquired
at the baseline and follow-up visits, is given by

htli = µ... + Tt + Ll + I(T )i(t) + TLtl + εtli (1)

where htli is the retinal height at location l (within a superpixel)
in topography i acquired at time t, µ... is the mean retinal height
in a superpixel location (computed using topographic height
measurements from all valid t, l, and i indices in a superpixel),
T is the main effect of the time factor T, L is the main effect
of the location factor L, I(T ) is the main effect of the random
image factor I with independent N(0, σ2

i(t)), TL is the two-way
interaction effect between the time factor T and the location
factor L, and εtli is the model error with independent N(0, σ2

ε ).
The significance of the mean retinal height change at each su-

perpixel location is estimated using Satterthwaite’s approximate
F-test. For each follow-up exam, a change significance map is
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Fig. 2. Detecting significant retinal height changes from the baseline session N1 to the follow-up session 01 of subject 1D using TCA.

constructed by identifying the superpixel locations with signif-
icant decrease in retinal height from the baseline exam (i.e.,
locations with negative height change in the mean difference to-
pography and with change probability p < 0.05). Fig. 2 demon-
strates the application of the TCA using the TopSS topographies
of a primate eye with experimentally induced glaucoma from
the LEG study.

For a specific detection of glaucomatous changes in a follow-
up exam, superpixel locations with significant decrease in retinal
height repeatable in two or three successive follow-up exams are
grouped into clusters [20]. In TCA, commonly used summary
parameters estimated based on changes repeatable in two or
three successive follow-up exams are: 1) the size of the largest
cluster of superpixels with significant height decrease within
the optic disk margin (CSIZE); 2) the proportion of the CSIZE
measure to the optic disk size (CSIZE%); and 3) the total number
of superpixels with significant height decrease within the optic
disk margin [20]–[22].

III. ONH TOPOGRAPHIC LIBRARY FROM THE LSU
EXPERIMENTAL GLAUCOMA STUDY

Glaucomatous changes in the ONH region, which may result
in changes in the optic disk configuration and/or in the nerve
fiber layer, originate either directly from the defects in the un-
derlying neuronal cell layers or indirectly influence the function
of the neural cell layers and cause eventual changes in the vi-
sual function of the eye. However, the order of the temporal
sequence of observing the ONH structural changes and the vi-
sual function defects in an eye varies [23]. Although the visual
function defects are associated with structural defects, such as
dysfunction and death of retinal ganglion cells and loss of optic
nerve fibers, the associated structural defects may not always

be visible in the retinal surface at the same time, i.e., the to-
pographic ONH surface changes are not temporally correlated
with the visual function changes. For example, when the initial
damages occur in the deeper underlying layers of the retina,
changes in the visual function of the eye may be observed ear-
lier than the appearance of the structural changes in the ONH
topographies. Due to this difficulty, currently, there is no single
gold standard available to define a glaucomatous progression in
an eye. Current studies utilize an operator evaluation of optic
disk photographs and/or changes in the visual function to define
glaucomatous progression in an eye. Therefore, to evaluate a
new glaucomatous progression algorithm, it is an ideal choice
to experimentally induce glaucoma in an eye, wherein the state
of an ONH is experimentally controlled during each follow-up
exam. In experimental glaucoma, the intraocular pressure (IOP)
of an eye is elevated above the normal level to induce optic nerve
damages.

In this study, we utilize a library of ONH topographies of 12
primates (24 eyes), built from the LEG study [18], to evaluate
the performance of the POD framework. Details of all aspects of
the LEG study have been described previously [18]. In brief, one
eye of each primate was treated with laser to induce glaucoma
(glaucoma-induced study eye) and the other eye is untreated
(contralateral normal eye). The ONHs of both the glaucoma-
induced study eye and the contralateral normal eyes of all the
primates were imaged every two weeks. During each imaging
sessions, six ONH topographies of each eye were obtained to
characterize the topographic measurement variability of an eye
within each imaging session. The IOP in the glaucoma-induced
study eye of each of the 12 primates was elevated by treating
the trabecular meshwork with argon laser. Prior to inducing
IOP elevation in the glaucoma-induced study eyes, the ONHs
of both the eyes were imaged during three separate baseline
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TABLE I
SUMMARY OF THE LEG STUDY IMAGING SESSIONS THAT WERE USED FOR

EVALUATING THE POD FRAMEWORK

imaging sessions (N1 , N2 , N3) spaced at least two weeks apart.
After elevating the IOP level in the glaucoma-induced study
eyes, both the glaucoma-induced study eyes and contralateral
normal eyes were imaged every two weeks, as mentioned earlier.
A summary of the pre- and post-laser imaging sessions of all
the primates at 10◦ and 15◦ field of imaging is presented in
Table I. Out of the six topographic scans acquired during each
imaging session, a minimum of four topographies were required
to be of good quality, and the poor quality scans were discarded.
Imaging sessions with less than four good quality scans were
repeated. A total of 2098 good-quality ONH topographies at
10◦ field of imaging and 2107 good quality ONH topographies
at 15◦ field of imaging are available in the LEG study library.

TopSS—a CSLO—was used to image the ONH of the pri-
mates. The principle of a CSLO and the details of TopSS have
been described previously [18]. In brief, TopSS has a lateral
digital resolution ranging from 11 µm at 10◦ field of imaging
to 35 µm at 30◦ field of imaging and an axial resolution of
∼300 µm (full-width at half-maximum). Reproducibility of to-
pographic measurements are 20 µm laterally and better than
30 µm axially. TopSS constructs a topography that represents
the surface of the ONH from a set of 32 optical serial section
images of the ONH region. The optical section images, each of
size 256 × 256 pixels, correspond to the ONH structure at var-
ious depths and collectively represent the 3-D structure of the
ONH. A least squares fit algorithm is used to register the optical
section images of a scan using one of the optical sections from
the scan as a reference [18]. An ONH topography is constructed
by identifying the maximal reflectance value at each pixel posi-
tion among all of the 32 registered optical section images (see
Fig. 3 for an example of constructing an ONH topography from
optical section images). Thus, a topographic surface is expected
to represent the vitreo–retinal interface in an eye. Topographies
acquired during follow-up imaging sessions are registered to
one of the baseline topographies using a least squares fit algo-

Fig. 3. Example demonstrating the construction of an ONH topography from
a stack of HRT-II ONH optical section images of a human study participant in
the Diagnostic Innovations in Glaucoma Study (DIGS) at Hamilton Glaucoma
Center, University of California San Diego. (a) Optical section at ∼620 µm.
(b) Optical section at ∼1.3 mm. (c) Topography constructed from the optical
sections. The reflectance value selection masks in (a) and (b) indicate locations
in the respective optical sections that have the highest reflectance value among
all optical sections in the scan. The ONH topography in (c) was constructed
using the highest reflectance values at each pixel location among all optical
sections in the scan.

rithm [18]. The imaging angle of the instrument can be set to
acquire images at either 10◦ or a 15◦ field of imaging while
maintaining the same digital imaging area of 256 × 256 pixels.
ONH topographies at 10◦ field of imaging are at a higher reso-
lution compared to the topographies at 15◦ field of imaging, and
therefore incorporate more ONH details, as shown in Fig. 1.

The TopSS software allows studying changes in the optic
disk configuration by manually drawing an ellipse on the outer
margin of the neuroretinal rim or the inner margin of the scleral
ring in the baseline exam of an eye. In the LEG study, a TopSS
operator manually chose one of the ONH topographies from the
baseline imaging session of an eye as a reference and selected el-
lipse parameters a and b and coordinates (x0 , y0) appropriate for
the ONH being imaged to manually mark the optic disk margin.
Because the shape of an optic disk is vertically oval [7], TopSS
aligns the major axis of the ellipse along the y-axis (i.e., at an
orientation angle of 90◦). The ellipse parameters were automat-
ically transferred to each of the follow-up ONH topographies
upon registration and is useful in determining the glaucomatous
changes over time in the neuroretinal rim and optic cup. Further,
the operator selected a set of new ellipse parameters and coor-
dinates when there was a significant change in the shape of the
optic disk during a follow-up, or when the ellipse transferred
to a follow-up topography by the TopSS software did not ad-
equately fit the optic disk margin. Ellipse parameters from the
most recent imaging session of an eye, approved by the TopSS
operator, were applied to the subsequent follow-up exams of the
eye.

Our evaluation of the time series of TopSS ONH topographies
from the LEG study library revealed rotational misalignment
errors as large as ∼18◦ among baseline and follow-up topogra-
phies of an eye (for example, see Figs. 4(a), (c), and (f) for
the topographies of subject 1D from imaging sessions N1 , N2
and 06, respectively). The operator evaluation of the ellipses
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Fig. 4. Follow-up ONH topographies of subject 1D show rotational misalign-
ment after TopSS software alignment (with reference to a baseline topography
from session N1 ). (a) Topograph from session N1. (b) Topograph from ses-
sion N1 in polar coordinates. (c) Topograph from session N2. (d) Topograph
from session N2 in polar coordinates. (e) Session N2 topograph in (c) after
alignment. (f) Topograph from session 06. (g) Topograph from session 06 in
polar coordinates. (h) Session 06 topograph in (f) after alignment. All follow-up
topographies are aligned with the reference topography from session N1 using
the FFT-based template matching algorithm.

transferred to the follow-up topographies guaranteed a more
accurate ellipse fit for the optic disk and, more importantly,
allowed to correct any translational errors (i.e., vertical and hor-
izontal shifts) among ONH topographies after automated align-
ment of topographies using the TopSS software. However, the
topographies from the library revealed that this procedure did
not adequately account for any rotational errors not corrected by
the TopSS registration algorithm. Because both the POD frame-
work and the TCA method detect localized pixel-level changes,
their detection accuracies are dependent on the alignment of the
baseline and follow-up ONH topographies of an eye. Therefore,
we corrected any rotational misalignment among the ONH to-
pographies using an FFT-based template matching algorithm,
and the details are presented in the next section.

IV. ROTATIONAL ALIGNMENT OF TOPSS TOPOGRAPHIES

Rotational misalignment between a baseline and a follow-
up topography with a common center can be estimated as a
translation along the θ-axis in the polar coordinates [24]. To-
pographies, in the Cartesian coordinate system, can be trans-

formed to polar coordinates by interpolating radial pixel inten-
sities along the r-axis at various angles θ from the topographic
height matrix. For example, pixel intensity at a radius r and
an angle θ can be determined by interpolating the pixel inten-
sity at (x = r cos θ, y = r sin θ) from the topography. We used
bilinear interpolation for transforming ONH topographies to
polar coordinates. Fig. 4(a) shows an ONH topography of sub-
ject 1D from baseline session N1 (in Cartesian coordinate), and
Fig. 4(b) shows its corresponding polar coordinate representa-
tion for a circular region shown in Fig. 4(a). Manual evaluation
of the ellipse fit for the optic disk margin by a trained TopSS
operator, as mentioned in Section III, corrects for any horizontal
and vertical shifts of the ODR in the follow-up imaging sessions
with reference to a baseline topography.

The ODR enclosing the profiles of peripapillary arteries and
veins in ONH topographies was used to estimate the rotational
misalignment errors. The rotational misalignment angle in a
follow-up ODR can be determined using a template match-
ing algorithm [25]. Let Ibl and Ifup represent the baseline and
follow-up ODRs, respectively, in the Cartesian coordinates. Let
Îbl and Îfup be their respective transformations to polar co-
ordinates. The template matching algorithm uses a gray-scale
region of size Q × R from Îbl at location (ir−t , iθ−t) as a tem-
plate It . The template It from the baseline topography Îbl is
matched against various gray-scale regions in the follow-up to-
pography Îfup , with each gray-scale region of size Q × R and
origin (ir , iθ ), to determine the region in Îfup that results in a best
match with the template It . A similarity or dissimilarity measure
is commonly used in the template matching algorithm to iden-
tify the degree of match or mismatch between various gray-scale
regions in Îfup and the template It . The similarity/dissimilarity
measure chosen for template matching should account for any
changes in the lighting conditions and gray-scale intensity vari-
ations in Ifup . A normalized correlation measure adapts to the
characteristics of the pixel intensity variations and changes in
the lighting condition between imaging sessions. Thus, it re-
sults in a maximum correlation value at the location of best
match [25]. Normalized correlation C(ir ,iθ )(It , Îfup), between

the template It and a gray-scale region from Îfup at (ir , iθ ), can
be computed as

∑Q
j=1

∑R
k=1 It(j, k)Îfup(ir + j, iθ + k)√∑Q

j=1
∑R

k=1 I2
t (j, k)

√∑Q
j=1

∑R
k=1 Î2

fup(ir + j, iθ + k)
(2)

where ir and iθ represent the indexes along the r-axis and
θ-axis, respectively. The location (ir-best , iθ-best) in Îfup that
gives the highest correlation value in (2) represents the ori-
gin of a gray-scale region in Îfup that matches best with the
template It . Given a resolution of ∆θ◦ along the θ-axis, an
estimate of the rotational misalignment between the baseline
topography Ibl and the follow-up topography Ifup is given as
(iθ−t − iθ-best) ∗ ∆θ◦. Now, the ODR Ifup can be rotated by
(−(iθ−t − iθ-best) ∗ ∆θ)◦ to align with the baseline ODR Ibl .
In all primates, misalignment along r-axis (i.e., ir−t − ir-best)
was minimal, and therefore, we retained the respective ellipse
center coordinates (x0 , y0) of each follow-up exam.
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A faster, yet, a reliable template matching method us-
ing a normalized correlation measure as in (2) can be im-
plemented using FFT [25], [26]. With F representing the
Fourier transform, the numerator of (2) can be efficiently im-
plemented as a convolution of Îfup with It in the frequency
domain as F−1(F (It)F (Îfup)∗). The first normalizing factor∑ ∑

I2
t (j, k) in (2) due to the template is constant irrespective

of the moving window location (ir , iθ ). The second normal-
izing factor

∑ ∑
Î2
fup(ir + j, iθ + k) varies with the moving

window location (ir , iθ ). It can be implemented as a convolu-
tion of Î2

fup with a kernel {MaskQ×R : Mask(i, j) = 1 ∀i, j}
used for selecting various regions in Îfup . FFT-based normal-
ized correlation measure invariant to gray-scale intensity and
lighting changes C(It , Îfup) can be computed as

F−1(F (It)F (Îfup)∗)√∑M
j=1

∑N
k=1 I2

t (i, j)
√

F−1(F (Î2
fup)F (Mask)∗)

. (3)

Our implementation of the FFT-based normalized template
matching algorithm in MATLAB ver. 7.6 provided a significant
improvement in computational speed compared to the direct
normalized correlation-based template matching technique. For
example, searching a template of size 50 × 50 pixels in an im-
age of size 256 × 256 pixels took 0.056 s using the FFT-based
method compared to 4.8 s using the direct method.

For estimating true translations along the θ-axis (i.e., rota-
tional error), the template chosen for matching should enclose
spatial relationships between features that are unique and stable
during follow-up imaging sessions. The spatial arrangement of
arteries and veins branching out from the ODR is relatively sta-
ble during the disease process, and therefore can be utilized to
identify rotational misalignment errors. In contrast, due to glau-
comatous progressive changes during follow-ups, the shape of
the optic disk may change significantly from a baseline condi-
tion. Therefore, to improve the rotational error estimates, we
excluded the ODR and utilized arteries and veins in the peri-
papillary retina while choosing a template It from Îbl . Fig. 4(b)
shows a template of radius ∼20 pixels that touches the outer
border of the optic disk. As the ellipse fits the optic disk margin,
the inner radius of the template can be chosen to be slightly
greater than the major axis parameter b of the ellipse. We used
templates of width ∼20 pixels along the r-axis from the inner
radius (see Fig. 4). ONH topographies of subject 1D at imaging
sessions N2 and 06 are shown in Figs. 4(c) and (f), respectively.
Figs. 4(d) and (g) show their corresponding polar coordinate
transformations along with the gray-scale regions that provided
the best match with the template It chosen from Îbl shown
in Fig. 4(b). The ONH topographies from sessions N2 and
06 after rotational corrections are shown in Figs. 4(e) and (h),
respectively.

V. BUILDING AN OPTIMAL BASELINE SUBSPACE OF THE ONH
OF AN EYE USING POD

A POD of an ensemble of vectors provides an optimal set of
orthogonal basis vectors that span the entire ensemble space [27]
and guarantees the best k-term orthogonal expansion, in a mean

squared error sense, among all the orthogonal transforms [28].
POD decorrelates a given ensemble of signal by discovering an
orthogonal basis set that is specific and optimal for the signal
under consideration as opposed to analyzing the signal using an
off-the-shelf wavelet basis or Fourier transform.

Let,
{
Ibl(m)

}N

m=1 be a set of expectation-centered gray-
scale ODRs from the ONH topographies acquired at a baseline
or reference condition of an eye Es of a given subject s. The
ensemble of baseline ODRs is expected to characterize the to-
pographic measurement variability introduced by the imaging
instrument and, more importantly, characterize the ONH struc-
ture of the eye Es at a baseline condition. Let S × T be the
size of each of the ODRs in the ensemble, where S, T ≤ 256
(because TopSS topographies were of size 256 × 256 pixels).
The ODR dimension S × T depends on the size of the optic
disk, and our choice was guided by the ellipse parameters a
and b that mark the optic disk margin. The details of our ODR
selection are presented in Section VI. An ODR ensemble matrix
XST ×N is constructed using the column-formatted ODRs from
the ensemble

{
Ibl(m)

}N

m=1 , where N is the ensemble size. For
example, an ODR Ibl(i)S×T will be reformatted as Ibl(i)ST ×1
and will form the ith column of the ensemble matrix XST ×N .

Using POD, each of the ODRs Ibl(m) in the ensemble can
be expanded as

Ibl(m) =
∑

α(m,n)φn

with E
(
α(m,i) , α(m,j )

)
=

√
λiδij and

〈φi, φj 〉 = δij . (4)

Here, E is the expectation, {λi} are the eigenvalues, and {φi}
are the eigenvectors of the covariance matrix R ∈ R

ST ×ST com-
puted as R = XXT . In the discrete case,

RΦ = ΛΦ. (5)

Thus, the eigenvectors Φ computed using the covariance R of
the ensemble matrix X form an optimal orthogonal basis for
the baseline ODR ensemble. The existence of Λ = {λi} and
Φ = {φi} in (5) is guaranteed by the Mercer’s theorem [29]
analogous to the spectral decomposition of symmetric matri-
ces [30]. The eigenvectors and eigenvalues of R can be com-
puted using a direct computation or using a reduced computation
technique called the method of snapshots [10], [27].

The eigenvectors Φ = {φi} in (5) that form the orthogonal
basis for the ensemble can be derived using a singular value
decomposition (SVD) of the ensemble matrix X as follows:

X = UΛV (6)

Covariance R = XXT = UΛV V T ΛUT = UΛ2UT . (7)

The left singular vectors U span the column of the ensemble
matrix X , and thus form the basis of the ODR ensemble. Solving
the eigenvalue problem in (7), for the ODR ensemble matrix
X formed using the baseline ensemble

{
Ibl(m)S×T

}
, requires

solving an ST × ST system, where ST ≤ 65 536. Although
computational resources are available for solving such a massive
eigenvalue problem, it is unnecessary for the problem under
consideration. Moreover, the ensemble matrix X is singular
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and does not require a full dimension to describe the ensemble
elements. The dimension of an optimal orthogonal basis needed
to describe the ensemble is N . Thus, a reduction in the basis
computation can be achieved using a reduced SVD approach as
follows:

XT X = V T ΛUT UΛV

= V T Λ2V. (8)

The right singular vectors V and the eigenvalues Λ can be com-
puted from (8). This requires solving an N × N system. Further,
the left singular vectors U can be computed from (6) using X , V ,
and Λ. The reduced SVD approach for determining an optimal
ensemble basis provides a significant reduction in computation
when the ensemble size N 
 ST , with an ODR size of S × T .

VI. GLAUCOMATOUS CHANGE DETECTION FRAMEWORK

Prior to applying the change detection framework described
in this section, rotational misalignments that we observed in
the ONH topographic library from the LEG study were cor-
rected using the rotational alignment procedure described in
Section IV. In general, after delineating the ODR of an eye by
manually drawing a contour line (contour line is an ellipse in
the case of TopSS topographies and a spline curve in the case
of HRT topographies) and after aligning baseline and follow-up
topographies of an eye, the following steps can be applied to
ONH topographies obtained at either 10◦ or 15◦ field of imaging
to identify changes in the ODR of the eye from baseline.

A. Topography Preparation

We selected ODR from each of the topographies by construct-
ing a minimum bounding rectangle of size (2a + 1) × (2b + 1)
with center (x0 , y0) guided by the ellipse coordinates (x0 , y0)
and parameters a and b that mark the optic disk margin in a
topography. To select the same area of ODR from all the exams
of an eye for analysis, we chose ellipse parameters a and b from
one of the baseline exams of the eye and applied to each of
the follow-up exams. Alignment among baseline and follow-up
exams was maintained by using their respective ellipse center
coordinates (x0 , y0). Because any rotational alignment errors
were corrected before this step, using the same baseline ellipse
parameters a and b for all the follow-up imaging sessions en-
sured that a similar ODR was selected for analysis from all the
imaging sessions of an eye.

As mentioned earlier, let Ibl and Ifup represent the ODR
extracted from the baseline and follow-up topographies of an
eye, respectively.

B. Baseline-Subspace Construction

An optimal orthogonal subspace at baseline was constructed
for each eye as described in Section V using the ODRs of all the
baseline topographies of the respective eye (ODR selected as in
Section VI-A). The optimal orthogonal subspace, called base-
line subspace, describes the baseline condition of an eye and is
used to quantify changes in the ONH of the same eye observed
during a follow-up at a later time. The baseline topographies

Fig. 5. Constructing a set of optimal POD basis vectors that span the baseline
subspace of the glaucoma induced study eye of subject ID. (a) Set of 18 baseline
ONH topographies from the pre-laser imaging session. (b) POD basis vectors
estimated from the baseline topographies in (a). The baseline subspace spanned
by the POD basis vectors [pictorial representation shown in (b)] captures the
inherent structure variability and the topographic measurement variability from
the pre-laser session baseline topographies.

chosen for subspace construction should characterize the vari-
ability in the appearance of the ONH at the baseline condition
and the measurement variability due to the imaging instrument.
In the LEG study, the baseline imaging sessions N1 , N2 , and
N3 were scheduled at least two weeks apart before inducing
an experimental glaucoma in the glaucoma-induced study eyes
in order to capture the variability in the ONH structure at the
baseline condition. Therefore, we used topographies from all
the three baseline imaging sessions of an eye to construct the
baseline subspace of the respective eye.

Let {φi}N
i=1 represent the baseline subspace of an eye, where

N is the size of the ensemble of baseline topographies used for
subspace construction. Fig. 5(a) shows an ensemble of baseline
ONH topographies from the pre-laser treatment imaging ses-
sions N1, N2 , and N3 of subject 1D, and Fig. 5(b) shows a
pictorial representation of a set of optimal POD basis vectors
that form the baseline subspace of the eye.

C. Representation of Follow-Up Topographies in the
Baseline Subspace

To determine changes in the ODR of a follow-up topography
Ifup , we identified a topography Îfup in the baseline subspace of
the eye, which is structurally similar and geometrically closer
(in a least squared error sense) to the observed follow-up topog-
raphy Ifup . Îfup is referred to as the baseline-subspace repre-
sentation of the follow-up topography Ifup and can be uniquely
estimated as an orthogonal projection of Ifup in the baseline
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Fig. 6. POD analysis and TCA of the contralateral normal eye of subject 1D. (a) Observed mean topographies. (b) Baseline subspace representeation of the mean
topographies in (a). (c) TCA change significance maps indicating locations with significant decrease in retinal height from the pre-laser imaging session N1. The
observed topographies in (a) and their respective baseline-subspace representations in (b) appear more similar indicating less changes from baseline. For example,
IMED 6338 of the follow-up imaging session 04 of the contralateral normal eye in (b) is lower compared to the IMED 14 681 of the post-laser session 04 of the
glaucoma-induced study eye in Fig. 7(b).

subspace as follows:

Îfup =
N∑

i=1

〈Ifup , φi〉φi. (9)

Fig. 6(a) shows the mean topographies from the pre- and post-
laser treatment imaging sessions of the contralateral normal eye
of subject 1D, and Fig. 6(b) shows their respective baseline-
subspace representations. Figs. 7(a) and (b) show the mean to-
pographies and their baseline-subspace representations for the
glaucoma-induced study eyes of subject 1D. The corresponding
TCA change significance maps for the contralateral normal eye
and the glaucoma-induced study eye of subject 1D are shown
in Figs. 6(c) and 7(c), respectively. For the contralateral normal
eye, it can be seen that the POD baseline-subspace represen-
tation of the ONH topographies from the follow-up imaging
sessions [see Fig. 6(b)] closely represent the respective original
ONH topographies [see Fig. 6(a)]. Because the laser-treated eyes
changed significantly due to the experimental glaucoma from
the pre-laser treatment baseline condition, the POD baseline
subspace cannot accurately describe their post-laser treatment
ONH topographies, as shown in Fig. 7(b).

D. Quantifying ONH Changes in Follow-Up Exams

It can be observed that when there are minimal or no changes
in a follow-up exam from a baseline exam, the baseline subspace
of the eye can accurately describe the corresponding follow-up
topography. Therefore, glaucomatous changes in the follow-up
ODR Ifup were quantified by determining the correspondence
in topographic measurements from locations with decrease in
retinal height between follow-up Ifup and its baseline-subspace

representation Îfup . The degree of similarity between an ODR
Ifup and its orthogonal projection Îfup can be quantified using
an image distance measure. We used L1-norm and L2-norm,
correlation coefficient, and an image Euclidean distance (IMED)
parameter (described later) to quantify ONH changes in follow-
up exams.

1) L1-norm, NormL1 (Ifup , Îfup), computed as∑
i

∑
j

∣∣Ifup(i, j) − Îfup(i, j)
∣∣. (10)

2) L2-norm or Euclidean distance, NormL2 (Ifup , Îfup), com-
puted as √∑

i

∑
j

(
Ifup(i, j) − Îfup(i, j)

)2
. (11)

3) Normalized correlation coefficient computed as in (2).
The L1-norm and L2-norm give a measure of mismatch be-

tween Ifup and Îfup . Therefore, lower values of L1-norm and
L2-norm indicate a higher degree of similarity and proportion-
ately lesser change in the follow-up ODR Ifup from the baseline
condition. The correlation coefficient measures the degree of
match between Ifup and Îfup . Therefore, a higher correlation
value indicates a higher degree of correspondence between them
and lesser change from the baseline condition. These metrics
estimate the degree of similarity or dissimilarity by determin-
ing their pixel-to-pixel correspondence between the ODR in a
follow-up topography and its baseline-subspace representation.
Therefore, they may be sensitive to even small pixel movements
and small deformation. The IMED [31] takes into account any
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Fig. 7. POD analysis and TCA of the glaucoma-induced study eye of subject 1D with progressive structural changes. (a) Observed mean topographies.
(b) Baseline subspace representation of the mean topographies in (a). (c) TCA change significance maps indicating locations with significant height decrease from
the pre-laser imaging session N1. Significant deepening can be visually observed (as increasing dark regions) in the ODR in the observed post-laser follow-up
topographies in (a) with respect to their baseline-subspace representations in (b) indicating significant changes in the observed follow-up topographies from
baseline (i.e., pre-laser). For example, IMED 14 681 of post-laser session 04 of the glaucoma-induced study eye in (b) is higher compared to the IMED 6338 from
the follow-up imaging session 04 in Fig. 6(b) of the contralateral normal eye.

small pixel displacements while computing a correspondence
measure.

Performance degradation in using Euclidean distance for im-
age similarity measurement comes primarily from the pixel-to-
pixel correspondence used and is due to the orthogonal coor-
dinate system employed for measuring an image distance. The
IMED overcomes this drawback by assigning a varying weight
to the adjacent pixels using a nonorthogonal basis. To account
for small pixel displacements, the IMED uses a nonorthogonal
basis that assigns a varying weight to the adjacent pixels while
comparing a pixel value between images. Because insignificant
pixel movements are expected to be near their respective original
pixel locations, a Gaussian-kernel-based pixel weighing scheme
would be a natural choice for the image similarity measurement.
The problem of determining an optimal nonorthogonal basis for
computing the IMED is avoided by using a metric coefficient
matrix G induced from the nonorthogonal basis. Using the sym-
metric positive-definite matrix G, the IMED can be computed
as a G-inner-product as follows:

IMED(Ifup , Îfup) = 〈Ifup , Îfup〉G
= IfupGÎfup .

If the standard deviation σ of the Gaussian kernel is far less
than the dimension of Ifup , then the construction of the met-
ric coefficient matrix G can be avoided, and hence, the IMED
computation can be significantly reduced as follows:

IMED(Ifup , Îfup) = 〈Ifup , Ĩfup〉 (12)

Fig. 8. POD IMED and TCA CSIZE parameter trend plots of subject 1D at 10◦
field of imaging. (a) POD IMED parameter trends. (b) TCA CSIZE parameter
trends.

where Ĩfup can be computed by filtering Îfup using a Gaussian
kernel of standard deviation σ. In this study, we chose σ = 2 for
IMED calculations. Fig. 8 shows the trend of the POD IMED
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Fig. 9. Stable and progression class-conditional probability density functions
of the POD IMED parameter and the TCA CSIZE parameter.

parameter and the TCA CSIZE parameter of the glaucoma-
induced study eye and the contralateral normal eye of subject
1D.

VII. PERFORMANCE ANALYSIS

For evaluating the performance of the POD framework and
TCA, we utilized estimates of area under their respective re-
ceiver operating characteristic curves (AUCs). The AUC gives
a measure of average sensitivity of a diagnostic test for all
specificity values, and thus provides an overall diagnostic per-
formance of the test. See [32] for a recent literature survey on
receiver operating characteristic (ROC) curves and associated
diagnostic measures.

For constructing the ROC curves of each of the progres-
sion summary parameters in the POD framework and TCA,
the respective progression summary parameters from each of
the post-laser treatment imaging sessions were grouped into
a stable group and a progressing group. The post-laser treat-
ment follow-up imaging sessions (i.e., imaging sessions 01 and
onwards) from the glaucoma-induced study eyes of all the pri-
mates were considered to be progressed, and the follow-ups
from the contralateral normal eyes without any laser treatment
were considered to be stable. Using the DeLong’s nonparamet-
ric method of comparing correlated ROC curves, we estimated
differences in the AUC estimates [and 95% confidence inter-
val (CI)] between the best performing summary parameter in
the POD framework and one of the best performing summary
parameters in the TCA method [33], [34].

VIII. RESULTS

Fig. 9 shows the class-conditional nonparametric probability
densities of the POD IMED parameter and the TCA CSIZE pa-
rameter for the stable and progressing group of ONH imaging
sessions at 10◦ and 15◦ field of imaging. The probability den-
sities for the progression summary parameters were built using
the adaptive mixtures method [35].

The ROC curves of the POD IMED parameter and the TCA
CSIZE parameter at 10◦ and 15◦ field of imaging are shown in
Fig. 10. The AUCs of all the POD parameters and TCA parame-
ters are listed in Table II. The IMED and L2-norm parameters in

Fig. 10. Comparative ROC curves and AUC estimates of the POD IMED
parameter and the TCA CSIZE parameter; ROC curves of other parameters
were not plotted for clarity. (a) ROC curves at 10◦ field of imaging. (b) ROC
curves at 15◦ field of imaging.

TABLE II
ESTIMATES OF AUCS OF THE POD FRAMEWORK AND TCA PARAMETERS

the POD framework resulted in the highest AUC of 0.94 at 10◦

field of imaging and 0.91 at 15◦ field of imaging among all of
the progression summary measures. At 10◦ field of imaging, the
difference in the AUC of 0.08 (95% CI = (0.04, 0.11); p-value
< 0.0001) between the IMED/L2-norm parameters and the best
performing TCA CSIZE/CSIZE% parameters was statistically
significant. The respective AUC difference of 0.03 (95% CI =
(0.00, 0.06); p-value = 0.063) at 15◦ field of imaging was of
borderline significance.
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IX. DISCUSSION

Glaucoma is a disease of progression characterized by pro-
gressive changes in the ONH structure and/or visual function
of the eye. Glaucomatous structural changes are often charac-
teristic in the neuroretinal rim, optic cup, and the nerve fiber
layer, while the exact role of relevant structures such as lam-
ina cribrosa is still under investigation. The POD framework
presented in this study focuses on detecting changes exhibited
in the ODR in the neuroretinal rim and optic cup and provides
the highest diagnostic AUC measures, statistically significant
at 10◦ field of imaging, for the experimental glaucoma primate
subjects from the LEG study. Also, the class-conditional proba-
bility densities of the POD IMED parameter have the least error
probability of 0.14 (estimated as the area of overlap between
the probability density functions of the stable and progression
groups) at 10◦ field of imaging. The least error probabilities
associated with the POD parameters show promise for further
performance improvements using the POD framework at 10◦

field of imaging. Error probabilities at 15◦ field of imaging are
generally higher with a decrease in the AUC of 0.91 from 0.94 at
10◦ field of imaging. This reduction in AUC and the associated
increase in error probability is likely due to the lower imaging
resolution available at the 15◦ field of imaging, and therefore, it
is preferable to acquire and use high-resolution ONH topogra-
phies for analysis using the POD framework.

The pixel-wise change analysis technique of TCA analyzes
ONH topographies at one-fourth of the original topographic
resolution. Also, TCA requires two or more additional follow-up
exams to confirm and establish confidence on a detected change.
In contrast, the POD framework analyzes the ONH structure at
the original topographic resolution and detects glaucomatous
changes from a baseline condition using only a single follow-up
exam.

Both the POD framework and the TCA method are sensitive
to any topographic misalignments because the analysis is car-
ried out at the pixel level. The IMED parameter in the POD
framework can account for small topographic misalignments.
In contrast to the TopSS instrument, the latest HRT-3 instru-
ments acquire high-resolution topographic scans for analysis
[e.g., compare TopSS topographies in Fig. 1 with HRT topogra-
phies in Fig. 3(c)] and utilize an improved feature-based align-
ment algorithm. With a more accurately aligned high-resolution
ONH topography from HRT, we expect a similar or an improved
diagnostic performance of the POD framework. Performance
of the proposed POD framework in a larger group of human
participants from a population-based glaucoma study will be
investigated in a separate work.

Due to the anatomical arrangement of the ganglion cell ax-
ons exiting the eye, neuroretinal rim is typically thicker in the
inferior, superior, nasal, and temporal regions within the optic
disk, in that order, thus giving a characteristic shape to the op-
tic disk and optic cup. Therefore, detecting changes within the
optic disk margin is expected to provide a specific detection of
glaucomatous changes in an eye. Other techniques such as TCA
and SIM of the retina methods define glaucomatous changes
based on observed pixel changes within the optic disk margin.

Therefore, in this paper, we derived glaucomatous change sum-
mary parameters in the POD framework based on topographic
measurements within the optic disk margin. However, in the
POD framework, similar change summary measures can also
be estimated in the peripapillary retina for detecting nerve fiber
layer defects.

In the current analysis, the POD framework does not have a
graphical representation of pixel-wise change locations. How-
ever, one of the advantages of the POD framework is that other
statistical and computational pixel-wise change detection al-
gorithms can be integrated with the POD framework. For ex-
ample, after constructing the baseline-subspace representations
of follow-up topographies in Section VI-C, pixel-wise changes
between follow-up topographies and their respective baseline-
subspace representations can be estimated using a statistical
procedure as in the TCA method. Inducing other pixel-wise
change detection algorithms within the POD framework will be
studied separately in a future work.

In TopSS, the ODR of an eye is delineated using a manually
drawn ellipse with its major axis along the y-axis. When the op-
tic disk is tilted and not aligned along y-axis, the fit of the ellipse
may not accurately delineate the ODR of an eye. However, the
effect of this limitation on the current analysis is minimal be-
cause a similar region was chosen from each of the baseline and
follow-up exams of an eye for detecting change over time. HRT
instruments overcome this limitation by using flexible spline
curves to accurately delineate the ODR. Using the spline curve
coordinates, the ODR from HRT topographies can be selected
for analysis by constructing a minimum bounding rectangular
region, as described in Section VI-A.

X. CONCLUSION

We have presented a novel subspace approach for detecting
glaucomatous progression in the ONH region of an eye. An ad-
vantage of the POD framework is its ability to characterize the
topographic measurement variability due to the imaging instru-
ment and imaging conditions and, more importantly, character-
ize the inherent variability of an ONH structure at a reference
or baseline condition. The POD framework constructs an op-
timal baseline subspace from a set of baseline topographies to
characterize the baseline variability of an eye. Glaucomatous
changes in a follow-up exam, typically beyond the structural
and measurement variability observed at baseline, can be de-
tected by comparing the follow-up topography with the base-
line subspace. The IMED and L2-norm parameters in the POD
framework provide the highest diagnostic accuracies at both 10◦

and 15◦ field of imaging. The POD framework provides the best
diagnostic accuracy when using high-resolution topographies
(i.e., TopSS scans at 10◦ field of imaging), and therefore, it is
preferable to use high-resolution scans for analysis using the
POD framework. The proposed POD framework can also be
used with other imaging modalities, such as optical coherence
tomography and scanning laser polarimetry, for detecting glau-
comatous structural change over time and can also be extended
for detecting visual function changes.
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